All functions

action()

Specify an action in a stage

case_distinction()

A simple function to define case distinctions

eq_cond_expected_outcomes()

Return conditional expected equilibrium outcomes

eq_cond_outcomes()

Return conditional equilibrium outcomes

eq_expected_outcomes()

Return a data frame of expected equilibrium outcomes

eq_li()

Return the computed equilibria using the internal representation

eq_outcomes()

Return a data frame of all equilibrium outcomes

eq_tables()

Return solved equilibrium in a table format

game_change_param()

Changes one or several parameters of a game

game_compile()

Compile a game defined with new_game

game_copy()

Make a deep copy of a game

game_fix_actions()

Fix move probabilities of actions

game_fix_action_preferences()

Set add a large amount of utility if a player plays a particular action

game_gambit_solve()

Solve equilibria of a game using Gambit

game_gambit_solve_qre()

Solve for quantal response equilibria using Gambit

game_prefer_outcomes()

Set add a large amount of utility if a player plays a particular action

game_set_options()

Change options of an already created game object

game_set_preferences()

Set players' preferences

game_solve_spe()

Solve equilibria of a game

game_write_efg()

Write game as a Gambit efg file

get_outcomes()

Return a data frame of all possible outcomes

is_true()

Returns logical vector replacing NA by FALSE

make_game_options()

Specify the game options inside new_game

make_game_params()

Specify the game parameters This function is only to be used inside new_game. To change the parameters of an existing game call game_change_params.

natureMove()

Specify a random move of nature in a stage

new_game()

Create a new gtree game

pref_change_params()

Change the parameters of a preference object

pref_custom()

Create a custom preference

pref_envy()

Fehr-Schmidt inequality aversion with envy only

pref_heterogeneous_players()

Combine preferences for different players

pref_ineqAv()

Fehr-Schmidt inequality aversion.

pref_lossAv()

'Linear loss aversion preferences with a single reference point

pref_payoff()

Utility is equal to monetary payoff.

stage()

Specify a stage for a game